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ABST RACT

A sensor netw ork w ith arrays of m icrophones and geophones has been deployed along a track in the country.
Together w ith a beam form ing technique, the sensor arrays produce bearing estim ates to passing vehicles.
T he bearing estim ates are sent to, and fused by, a K alm an tracking filter. We report how w e im plem ented
this system w ith low -com plexity distributed-type hardw are and softw are com ponents, and also indicate the
level of perform ance to be expected using a sm all num ber of intelligent netw ork nodes. We also study a large
data base w ith acoustic recordings collected in realistic environm ents w ith the purpose to classify vehicles
traversing the netw ork. Support vector m achine classifiers, taking as input spectral features picked up from
the em itted audio, are fused in tim e and space to identify the vehicle m odel.

1.0 INTRO DUCTION

T he vision of a w ireless ground sensor network is that of a network built up w ith cheap and tiny network
nodes deployed w ith little preparation and no m anual calibration. T his network works unattended for m onths
and delivers reliable situation awareness services to a local or rem ote operator. E ach node senses the envi-
ronm ent by m eans of, for instance, m icrophones, geophones, m agnetom eters, and/ or passive IR detectors,
and furtherm ore collaborates w ith its neighbor nodes to com pare, fuse and refi ne sensor data w ith the pur-
pose to detect, track and identify targets. To that end, the envisioned network topology is scalable in a sense
that allow s the num ber of nodes grow w ildly to supply coverage of a large area or a long border. T his im -
plies a distributed or at least a decentralized network topology that enables som e target activity to be a local
business that involves only that fraction of all network nodes that actually senses the target in question, see
F igure 1.

In our opinion, this is just a vision, but it is not science fi ction. A lthough not suitable for a distributed
sensor network, the m odern cell phone is a proof of that w e today can build portable devices w ith low energy
consum ption and m eans to com m unicate and do advanced signal processing. F urtherm ore, the Internet
is an exam ple of a huge scalable distributed network, although the internet protocol (IP ) is not energy-
efficient enough for our purposes. B luetooth is an exam ple of a self-confi guring ad-hoc network, although
it only allow s a restricted num ber of network nodes. A target can be tracked using fusion m ethods and
identified using modern pattern recognition methods that recognize patterns in, for instance, the emitted
sound. Admittedly, there still are important obstacles to overcome to reach our vision, but today we also see
many promising ways to advance the network and fusion technologies. No doubt, the force in control of the
envisioned sensor network will be able to quickly gain a crucial awareness of ground activities in conflict
areas.
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Figure 1: Ground sensor network. Sensors close to a target collaborate in tracking and classification, and
the network propagates the information to a local or remote user/operator.

1.1 The Interactive Adaptive Ground Sensor Networks Project

The evolution of the wireless sensor network spans over many scientific and technological domains, and it is
indeed difficult to account for more than just a fraction of them within the boundaries of any single research
project. Within the Interactive Adaptive Ground Sensor Networks Project (IAM) at the Swedish Defence
Research Agency (FOI) we have particularly focused on fusion methods for classification and tracking and
also user interaction with a scalable, distributed sensor network. A field trial to collect sensor data for nu-
merical studies off-line was conducted early in the project using a wired sensor network where each network
node was connected to an array of either microphones or geophones. A set of military vehicles ranging from
tanks to trucks served as targets. This paper reports results from data fusion experiments conducted on these
data, mainly tracking of military vehicles, see Section 3.0. Results on the interaction part of the project have
already been reported in [1], and will not be treated here.

For studies of automated vehicle classification (model identification), the Swedish Defence Material Admin-
istration (FMV) has supplied us with a data base containing over 900 recordings of vehicles passing a set of
microphones and geophones in a wired sensor network. Some results from these studies are given in Sec-
tion 4.0, where the acoustic part of the data has been used. We still work on the seismic part, for which we
find it difficult to show general results, since a classifier that works well at one site might not work well on
another. In other words, it is difficult to obtain a model that is useful on a wide variety of ground conditions.

Besides, in an ongoing project somewhat apart from IAM and in collaboration with SAAB Systems, we use
wireless network nodes, a fact that of course adds aspects of communication and routing, but also puts to real
test abilities of the fusion methods to cope with missing and randomly delayed data. Yet, it is a little early to
draw any formal conclusions from that project. The network concept has been reported in [2].

1.2 Related Work

As mentioned, the information flow in the network has been discussed in [1]. We have also reported results
on vehicle model classification in [3], and used similar methods on hydroacoustic data for ship classification
in [4].
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A text that fairly well overviews the components of a wireless sensor network, ranging from sensor tasks to
network protocols, is [5]. Another comprehensive text focused on the mathematical aspects of data fusion,
and with many references to further reading, is [6].

On subjects related to target localization in sensor networks, there are numerous interesting and rather recent
contributions, see for instance [7], [8], [9], [10], [11], and [12]. In [13], the sound source of low-flying
airborne targets are imaged by a high resolution array of 32 microphones.

An often cited text on target tracking is [14]. Some late and interesting contributions on bearings-only
tracking are [15, pp. 149-169], [16], and [17]. Particularly on problems related to distributed tracking filters,
we like to mention [18] and [19].

Signal classification in both the frequency and time domain is well covered in the literature, see for instance
[20], although the best way to handle non-stationarities and to do efficient fusion in practical situations well
deserves more treatment. Methods similar to the ones described here can also be seen in, for instance,
[21], where features from autoregressive models and spectral estimates are used by support vector machines,
Gaussian, and k-Nearest-Neighbor classifiers. Ground vehicles are classified as either tracked or wheeled
using microphones and geophones. Particularly interesting is also [22], where the subjects of lightweight
detection and classification appropriate for low-power wireless network nodes are discussed.

2.0 The IAM Sensor Network

The sensor network has been deployed hidden in the woods along a 500 m long dirt road in the back country.
Figure 2 is a rendering of the environment, done by a testbed system (MOSART) that we develop and use to
simulate and replay scenarios. The terrain is rough, and the sensors are placed at different distances from the
road and at different heights. Some are placed with line of sight to the road, others all obscured by trees. The
ground conditions are also characterized as rough with a mixture of marshland, rocks and tight vegetation.
A total of 10 sensor network nodes have been used in the experiments, see the orthographic photograph in
Figure 4. The node positions and orientations have been determined mainly by using this photograph, a tape
measure, and a compass. Each node includes a horizontal-plane circular array of three 120◦ interspaced
sensors, either geophones or microphones. The use of an array of sensors makes it possible to determine
the bearing to the emitting vehicle. No height information can be extracted from the used horizontal-plane
arrays.

All network nodes amplify and send their raw analog signals to a wired recording central that samples the
signals at 48 kHz and stores the uncompressed time series on hard disk drives. The recording central is a
PXI 1000B with PXI 4472 I/O-cards, both from National Instruments. A configuration with separate power
supplies ensures the node overhearing is kept below -100 dB.

One geophone (of three) is depicted in Figure 3 (a). The metal part of the geophone is stuck into the ground
on the circumference of a circle with radius 60 cm. The geophone is a SM6/U-B from INPUT/OUTPUT
Inc. in a PE-3 casing, sensitive mainly for seismic shear-waves, that is, vertical vibrations transverse the
direction of propagation.

Figure 3 (b) depicts a complete microphone array mounted on an ordinary microphone stand. The micro-
phone array has the radius 13 cm and is typically positioned 1 m above the ground. The microphone elements
are of the type KE-4-211-2 from Sennheiser, with diameter 4.75 mm, omnidirectional sensitivity, and 36 dB
rated self noise.
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Figure 2: A view of the test site as rendered by the FOI testbed for battlefield simulations, MOSART. The
test vehicles traveled on the road, while 10 arrays with microphones and geophones hidden off the road
in the woods transmitted their signals to a recorder. The recordings where later analyzed off line and also
replayed in the depicted MOSART environment.

(a) (b)

Figure 3: Sensors used in the IAM project. In (a) the geophone, put into the ground in arrays of three.
In (b) an acoustically well-designed microphone array mounted on an ordinary microphone stand. The
discus contains three microphone elements.
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Figure 4: Overview of road and sensor placements. NOD(3,5,6,8,10) are microphone nodes, and
NOD(1,2,4x,7,9x) are geophone nodes. L1 and L2 are laser triggers used for reference measurements.
The grid resolution is 10 meter.

3.0 Tracking

By using one sensor array, the bearing to a target can be estimated. In turn, by fusing the bearings received
from a collection of sensor arrays that sense the same target, a tracking filter can estimate the target position
and speed. Below we describe how these steps have been implemented by programs that are fast and simple,
although not shown optimal in accuracy.

3.1 Bearing Estimation

As mentioned, each sensor array has three sensors interspaced 120◦ in a circular arrangement. The micro-
phone array radius is r = 13 cm and the geophone array radius is r = 60 cm. The direction of an emitter,
acoustic or seismic, is determined by comparing the phases of the sensor signals, using the fact that the
incident wave propagates with finite speed, and thus reaches the sensors at slightly different time instances.

We assume a plane acoustic wave propagating from the emitting vehicle along a straight line to the sensor
array. This is a fair assumption only when the distance to the target is far greater than the size of the emitter
and the array radius (the far-field assumption). Furthermore, we assume in this discussion that there is only
one dominating emitter, which is to say, only one vehicle is in the vicinity of any sensor array when the
direction is determined. The sensor signals are analyzed in time windows of 0.1 s, assuming the that the
bearing change attributable to vehicle movement is insignificant during this time interval.

Say the emitter is about north-north-east vis-à-vis the sensor array according to Figure 5. Then the received
wave front will reach the microphone closest to the emitter first–s1 in the figure. After that, it will take
t12 = d12/c s for the wave front to reach s2, where c is the acoustic wave propagation speed in air for the
microphone array, or the seismic wave propagation speed in ground for the geophone array. After another
t23 = d23/c s it reaches s3.
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Figure 5: The circular sensor array with three sensors s1, s2, and s3. Plane wave propagation is assumed.
The acoustic or seismic wave from an emitter north-east vis-à-vis the sensor array will reach s1 first, then
s2, and last s3. The direction θ can be determined by estimating the time it took the wave to propagate d12,
d13, and d23.

Indeed, by knowing the distance d23 = t23/c, trigonometry gives the sought bearing angle θ. In theory, the
t23 could be found as the delay τ that maximizes the dependence between s2(t − τ) and s3(t). In the discrete
time domain (sampled signals), we estimate t23 by maximizing the Pearson product-moment correlation co-
efficient (PMCC) between time windows delayed integer amounts of sampling intervals. PMCC is a measure
of how well a linear equation describes the relation between sampled signals. With the propagation speed c,
the sampling interval T , and the maximizing integer time delay k23 (≈ t23/T ) at hand, the angle θ is given by
a trigonometric exercise that ends up with

θ = sin−1
[

d23

2r cos π6

]
= sin−1

[
k23 ·

cT

r
√

3

]
. (1)

Here, the wave reached the sensors in the particular order s1, s2, and s3. For the five other possible orderings
the expressions for θ are simlar.

The merit of the described algorithm is that it is fast and has a light-weight implementation. The accuracy
is constrained by the sampling frequency, since only integer time delays are considered. High accuracy thus
requires high sampling rate (over sampling), which puts extra demand on hardware.

A second drawback is that the wave propagation speed c is required to be known beforehand. In air, it
is temperature dependent, but fairly constant and within the range 320-350 m/s, so setting c = 340 m/s
gives fair accuracy in general. The seismic propagation speed, however, varies between 1500 and 8000 m/s,
depending on the media. To that end, seismic waves split into a longitudinal and a transverse component,
where the latter has a propagation speed only 60-70% of the former. The used geophone is however sensitive
mainly to the transverse component. To deal with the ground uncertainty, we calibrated the geophones and
determined the ground speed by analyzing how the sensors responded to sledgehammer stimuli conducted at
certain spots.

Robust Fusion of Multiple Microphone and 
Geophone Arrays in a Ground Sensor Network  

12 - 6 RTO-MP-SET-107 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



0 20 40 60 80 100
-150

-100

-50

0

50

100

150

0 20 40 60 80 100
-200

-150

-100

-50

0

50

100

150

200

0 20 40 60 80 100
-150

-100

-50

0

50

100

0 20 40 60 80 100
0

10

20

30

40

50

60

0 20 40 60 80 100
-200

-150

-100

-50

0

50

100

150

200

0 20 40 60 80 100
-200

-150

-100

-50

0

50

100

150

200

0 20 40 60 80 100

0

20

40

0 20 40 60 80 10
-200

-150

-100

0

50

0 20 40 60 80 100
-200

-150

-100

0

50

100

Node 3 (Microphone)

Node 9 (Geophone)

Node 5 (Microphone) Node 6 (Microphone)

Node 8 (Microphone) Node 10 (Microphone)

Node 4 (Geophone)

Node 2 (Geophone)Node 1 (Geophone)

-50

-50

-120

-100

-20

-80

-60

-40

Time [s] Time [s]Time [s]

B
e

a
ri

n
g

 [
d

e
g

re
e

s
]

B
e

a
ri

n
g

 [
d

e
g

re
e

s
]

B
e

a
ri

n
g

 [
d

e
g

re
e

s
]

-140

Figure 6: Bearing estimates of a vehicle passing the network from north to south with the speed 35 km/h
(22 miles/h), see Figure 4. North is 0 degrees. On color media, red indicates a signal power exceeding 0.05
times the maximum power in the run. Node 7 has been excluded here, since it gave no useful estimates.

Of course, when a slightly more complex algorithm can be accepted, we could, in addition to (1), account
for the whole set of equations induced by all three time delays t12, t13, and t23. Then, one of these equations
could be used to solve for c, and prior knowledge of the wave propagation speed is no longer crucial.

3.2 Numerical Example

Figure 6 shows the bearing estimates for the different nodes during the passage from north to south of a
BTR70 at 35 km/h (22 miles/h). BTR70 is a 12 ton, 8-wheeled military vehicle. The bearing estimate is
plotted against the time. Node 7 (geophone) gave no sensible estimate, so that plot is not provided here.
On color media, the curves are color-coded with the power, based on a calibration. Red indicates the power
exceeds 0.05 times the maximum calibration power.

For the acoustics, the analysis used 0.1 s windows with a sample rate reduced to 12 kHz. In Figure 7 we
have made a simple analysis of the impact of using integer time steps in the time delay calculation with these
settings. Apparently, the uncertainty attributable to quantified delays is about ±4.5◦. This is however only
one of many sources for uncertainty.
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Figure 7: The angle steps (resolution) at different integer sample time delays. Delay k = 3 means, ac-
cording to (1), an angle of 22.2◦, and k = 4 an angle of θ = 30.2◦. For any of the six possible orderings
of s1, s2, and s3, it is only necessary to consider a 360◦/6 = 60◦ interval. This restricts the delays to
k ∈ {−3,−2, . . . , 3}, so the angle resolution is, according to the box plot, no larger than ±9◦/2.

3.3 Tracking Filter

The task of the tracking filter is to estimate the state of the target, that is, the position and speed vector. The
tracking filter starts with some initial state estimate when the target enters the network, and then updates this
estimate recursively when bearings are received from sensor arrays within acoustic or seismic range of the
target.

State estimation with the bearings-only measurements is a nonlinear problem in the sense that the target bear-
ing angle transforms nonlinearly to the target position (sinuses and cosines). Since an implementation with
low complexity is preferred, we settle with a suboptimal linear algorithm that builds on the assumption that
the location uncertainty induced by inaccuracies in the bearing estimate has the shape of an ellipse (a Gaus-
sian), rather than a sector. Again for low complexity, a linear vehicle model has been used, which basically
is a Newtonian model of a mass affected by finite forces. With ellipse-shaped or Gaussian uncertainties and
linear dynamics, the (linear) Kalman tracker is in a sense the optimal choice, see [23]. Particularly we use
the (dual) information form of the Kalman filter, in which transformed information sent from nodes having
information enters the filter additively in an appealing manner. In contrast to the primal Kalman filter, the
information form is also appropriate for bearings-only estimation, since it allows the uncertainty along the
bearing direction to be infinite.

Regardless filter type, the state can be estimated in a (de)centralized or in a distributed manner. In the
centralized approach, there is only one state estimator per target, to which every node in vicinity of the target
sends its bearing and perhaps also the corresponding bearing variance. In the distributed approach, each node
in vicinity of the target has its own state estimator, and shares its state and perhaps also the state covariance
with its neighbor nodes. The distributed approach is more complex and requires more network bandwidth,
but gains in robustness since many nodes share the state. We have yet not dealt with the degeneration
followed from estimators naı̈vely interchanging their information back and forth. For a discussion in depth
on distributed Kalman filtering, see [18] and [19].

3.4 Numerical Example

Figure 8 shows the (naı̈ve) distributed Kalman filter track for the same passage of BTR70 as in the previous
example. A network node only sends its bearing estimate to the tracker when the signal power exceeds a
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Figure 8: Example of a Kalman vehicle tracking. The dashed line is the true track, compare with the road
in Figure 4. The vehicle is a BTR70 driving from north to south with the speed 35 km/h (22 miles/h).

fixed threshold set 0.05 times the maximum calibration power (the red curve part in Figure 6). Furthermore,
the tracker disregard received bearing estimates that are considered outliers, that is, bearing estimates that
not at all fit the track.

The tracker is initialized by the node that first produces a distinct bearing with sufficient signal power. The
initial position is set according to this bearing, and with respect to a node/target distance beforehand known
to be the limit for a useful bearing estimate. This initial state is usually very uncertain.

In conclusion, the tracking accuracy depicted in Figure 8 is probably sufficient for surveillance purposes.
This has been achieved using 10 sensor arrays to survey a 500 m track through the woods. In open terrain, it
will probably suffice with fewer sensors.

4.0 Vehicle Classification by Audio

Audio recordings of vehicles passing a sensor network do, not surprisingly, show a systematic difference
depending on the type of passing vehicle, say a car and a motorcycle. Most people can by experience
and/or little training recognize the difference and rather accurately distinguish between cars and motorcycles
merely by listening to the sound of the recordings. However, natural variations such as different speeds
and gears, Doppler shift, and so on, variations that the human brain easily generalize, can actually make it
rather difficult to construct an automated classifier that does an equally god job as a human when it comes to
distinguishing between different vehicles. To make an automated classifier work well, it usually needs to be
“trained” by a large set of recordings with known vehicle types—training sets that encompass a major part of
all variations within each vehicle class. When a new recording in some sense resembles one of the recordings
in the training set, the library, there is a good chance the classifier makes the right choice. These libraries,
however, need to be excessively large and become very expensive unless the classifier is given ability to
extrapolate or generalize. By ability to generalize we mean that the classifier should make a satisfactory
classification although the match with some of the recordings in the library is not perfect. This is really the
classical problem within the field of pattern recognition and machine learning: to learn something general
from a limited set of observations, see, for instance, [24].

By using audio recordings from a sensor network with a whole set of microphones placed at different loca-
tions, more information/observations is given, and thus, the sensor network should give better classifier per-
formance compared to a single microphone. The sensor network, however, also gives an increased richness
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Figure 9: Example of normalized periodograms from two different vehicles.

of variation in the observations, and the demand on the classifier’s ability to robustly generalize increases
in the same degree. The numerical data used in this section are collected at many different locations and
includes recordings both in the summer and in the winter, see Table 1. This rich data set gives opportunity
to study the generalization ability of a classifier by collecting a library at one location and validating it on
another.

4.1 Spectral Features

Inspecting the frequency spectrum of a signal often gives a “better picture” than the inspection of the sig-
nal directly. This is particularly so when there are periodic components in the signal, for instance, from a
spinning engine. These periodic components appears as distinct peaks in the spectrum. The spectral rep-
resentation also makes it easy to focus on frequency bands known to contain relevant information, feature
selection. We use the discrete Fourier transform (DFT) to extract spectral features from the microphone
signals. The idea is, of course, that there are significant systematic differences in the spectral feature sets due
to different vehicles, and that these differences can be learned by an automated classification program.

Signal classification in the frequency domain is well covered in the literature, see for instance [20], although
the best way to handle the non-stationarity in the vehicle audio appears to be an open question.

4.1.1 Discrete Fourier Transform and Periodogram

Denote by xi(t), t = 1, 2, . . . , n the sampled (audio) signal from one microphone under a fixed sampling
frequency and within a time window with length n samples. The index i is the recording ID and recordings
with different IDs can, of course, be due to different vehicles, but also just repeated recordings on the same
vehicle. The standard discrete Fourier transform (DFT) offers one way to estimate the signal power of {xi(t)}n1
at the (scaled) frequency f as

Ui( f ) =
1
n

n∑
t=1

xi(t)e
−2 jπt f /n, f = 0, 1, . . . , n − 1, (2)

where j =
√
−1, Ui( f ) is complex-valued, see for instance [25, pp. 122]. k frequencies f1, f2, . . . , fk known

to yield good classifier performance are selected once for all, and the absolute value of these selected Ui( f )
form the feature vector or periodogram Xi,

Xi =
[
|Ui( f1)| |Ui( f2)| · · · |Ui( fk)|

]T
. (3)

The phase is believed to contain less valuable information for the classifier and is disregarded. Figure 9
illustrates the low frequency part of the periodograms from two different vehicles. The periodograms are
normalized to unit Euclid norm.

Robust Fusion of Multiple Microphone and 
Geophone Arrays in a Ground Sensor Network  

12 - 10 RTO-MP-SET-107 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



4.1.2 Limitations of the DFT

A spectral estimate by the DFT needs a rather stationary signal with periodic elements to yield as distinct
features (peaks) as in Figure 9. Transient processes like accelerations, gear shifts and fast Doppler shifts
will smear out the peaks considerably and make it more difficult to distinguish the periodogram of one
vehicle from that of another. In that respect, the window length n determines a mandatory trade off between
resolution in time and frequency. Since the spectrum cannot be expected to be constant over time, the
periodograms from one signal cannot be naı̈vely aggregated over time by–say–the mean value.

4.2 Classification Method

A vehicle is classified by comparing the periodogram to a set of periodograms in a class library. This library
is based on (training) recordings where the vehicle class is known beforehand, so if the new periodogram
matches a periodogram in the library, it can directly be associated with a vehicle class. In this paper we ex-
clusively study the support vector machine (SVM) classifier which is one among many methods to represent
and use the class library. Below we will briefly describe the SVM, which is well-known in the literature, see
[24, 26], and also how to fuse data from multiple microphones.

4.2.1 Support Vector Machine (SVM)

The SVM classifier is fundamentally a binary classifier f : Rn → R, predicting the class label ωi that takes
on values in the set {−1, 1}. A new observation is classified using the signum function, ω̂i = sgn f (Xi). For
the library (training) periodograms {Xi, ωi}N1 with known ωis, f is defined as the solution to

min
c

N∑
i=1

V( f (Xi), ωi) + ξc
T Kc (4)

with

f (Xi) =
N∑

j=1

c jK(Xi, Xj) (5)

and the loss V( f (Xi), ωi) = max[1 − ωi f (Xi), 0]. Note that c =
[
c1 c2 · · · cN

]T
. K(Xi, Xj) is a reproducing

kernel, and particularly in this paper, we use the polynomial kernel

K(Xi, Xj) = (γXT
i X j + 1)d (6)

and the radial basis kernel
K(Xi, Xj) = e−γ‖Xi−Xj‖2 . (7)

γ and d are tuning parameters. The kernel matrix K has K(Xi, Xj) on the ith row and jth column. The term
ξcT Kc in (4) serves to smooth f (Tikhonov regularization). We use ξ = 1.

The minimization problem (4) is a quadratic programming problem with a problem structure that allows
very large instances to be solved efficiently . Far from all periodograms in the class library need to be stored,
which is an important feature when implemented in a network node with constrained resources. Compared
to a simple Gaussian classifier, the SVM is, however, a computationally rather heavy program. The libraries
used in this study varies between 12 and 20 MBytes.

In the literature there are many schemes to combine a set of binary SVM classifiers to handle multiclass
problems. In the multiclass case, the class label takes on values ωi = 1, 2, . . . , q, where q is the number of
classes. It still is an open question how to do this the best way, see [26]. We use an implementation that
defines an SVM classifier for every class pair. The results of the binary classifications are then combined in
a non-trivial way. We refer to [27] for details.
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Reliability Estimation When periodogram Xi is classified, also the classification reliability λi needed for
efficient data fusion is estimated. λi is a number between 0 and 1, where values close to 1 indicate very
confident classification. λi is induced by the class posterior probabilities Pω(Xi) assumed available as an
output of the classification program (SVM), one per class, ω = 1, 2, . . . , q. It is (disputably) assumed the
probabilities sum up to unity,

q∑
ω=1

Pω(Xi) = 1, i = 1, 2, . . . (8)

that is, the vehicle is in the library with probability 1. A confident classification is one with one class posterior
probability significantly larger than all others. We define λi as

λi =
supω Pω(Xi) − q−1

1 − q−1
, ω = 1, 2, . . . , q. (9)

4.2.2 VIP Voting Distributed Data Fusion

By data fusion, two or more observations of the same target made by two or more sensors are combined to
a unified result or classification. Data fusion also combines observations made at different time instances,
so we may distinguish between spatial fusion where observations are collected from different sensors, and
temporal fusion, where observations are collected over time. Decision fusion is a special fusion concept,
where each observation is classified individually, whereafter these separate classifications are combined to
a unified classification (in contrast to combining raw data), see [6, pp. 205-238]. Decision fusion is closely
related to distributed classification, and particularly appropriate to use with wireless sensor networks since
raw data is newer transmitted. In this paper it is assumed that a recorded signal is due to one vehicle only.
We use a decision fusion flavor called VIP Voting.

Ordinary voting is a simple fusion scheme where each classifier votes for a class, and the class in majority
establishes the final fused result, see [28]. With the VIP voting scheme, this election is not entirely democratic
since only the most reliable classifications are allowed to vote (the very important persons). This method
requires that classifications are assessed with the measure of reliability, λi, described above, which in practice
indicates how well the classified feature vector Xi matches the library. A value close to one means there is
a very good match, while a value close to zero means Xi does not match any of the feature vectors in the
library. The latter situation is typical for heavily disturbed or distorted signals, when it is motivated to rate
the classification at hand as unreliable and disregard it.

4.3 Numerical Experiment

The data set used here contains recordings at 12 different test sites and at different seasons. The data sets are
named A-L and are enumerated in table Table 1. The November measurements where conducted winter time
with snow on the ground and partly icy roads. 14 different military vehicle models passing the microphone
network at different speeds where recorded, see Table 2. The acoustic sensor setup consisted of 4 microphone
nodes (u1, u2, u3, and u4) with one microphone in each node and with sampling rate well over the Nyquist
frequency.

We are focused on classifying a vehicle passage using both spatial and temporal fusion on periodograms from
all 4 microphone nodes and all time instances. The analysis presented here is completely conducted off-line
in MATLAB with CPU intensive parts in C++, althogh the same algorithms recently have been successfully
implemented in the wireless sensor network described in [2]. We use the SVM implementation LIBSVM, see
[27]. The LIBSVM classifier outputs a score vector with estimated class probabilities Pω(Xi). As desired,
the score vector sums up to unity and the actual classification is simply the class corresponding to maximum
Pω(Xi).
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Table 1: Sensor settings. Note the different ground surfaces, and the different seasons.

Setting Season Ground
A Winter Dirt road or grass
B Winter Grass
C Winter Dirt road through the woods
D Winter Dirt road
E Summer Grass
F Summer Asphalt

Setting Season Ground
G Summer Grass
H Summer Dirt road
I Summer Grass
J Summer Grass
K Summer Dirt road
L Summer Dirt road

Table 2: Type code, vehicle type, and number of recorded passages at the different sensor settings A-L.

Type Code Weight Propulsion Tot A B C D E F G H I J K L

LW1 Light Wheels 14 2 12
LW2 Light Wheels 67 14 8 13 2 5 11 2 12
HW1 Heavy Wheels 58 14 8 12 10 4 10
LT Light Tracks 44 14 8 12 10
HT3 Heavy Tracks 48 14 11 12 11
HT8 Heavy Tracks 44 14 8 12 10
HW3 Heavy Wheels 82 14 8 12 10 8 18 12
HT9 Heavy Tracks 102 14 14 12 10 18 4 18 12
HW2 Heavy Wheels 38 8 18 12
HT4 Heavy Tracks 30 4 14 12
HT2 Heavy Tracks 34 4 18 12
HT1 Heavy Tracks 30 4 14 12
HT10 Heavy Tracks 65 34 31

Preprocessing The preprocessing serves to form a normalized periodogram with appropriate resolution:

1. Resample to 25 kHz

2. Extract a continuous signal part where the signal power exceeds 0.2 times the calibrated maximum

3. Calculate periodograms based on DFTs of non-overlapping 8192 point rectangular windows

4. Extract periodogram components indexed 5 to about 100 (15-300 Hz)

5. Normalize to unit Euclid norm

The data reduction followed by extracting certain low frequencies of the close passage reduce the compu-
tational load considerably and also, to some extent, avoid numerical issues. The SVM classifier is applied
directly on the preprocessed data, that is, using no PCA compression or the like.

Validation Approach We assess the classifier performance as the percentage correctly classified test pas-
sages. None of the test data are included in the library. A set of alternative partitionings of the available data
are tested using the different sensor settings in Table 1.

To be certain not to obtain results that are too optimistic, all single-vehicle passages in the available data base
are used – even awkward sounding passages, starting, stopping, accelerating, and so on, are classified with
no exception. This means that the classifier performance is evaluated on data that include test cases where
there is really no hope to make a correct classification, not even for a trained human ear.

The number of periodogram components and kernel function to be used, have been selected to yield a clas-
sification accuracy of around 99% when testing the classifier on the library data (training data). With higher
hit rates, the performance degrade due to over fitting (fitting to noise).
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4.4 Classification Results

The overall results are given in Table 3. Not surprisingly, different choices of library and test data give
different number of correctly classified passages, ranging from 81% to 99%. Libraries including many
vehicle models usually give lower accuracy.

Table 4 gives an example of a confusion matrix, where the rows are the actual vehicle model, and the columns
are the estimated. The test data set is from setting I and J and the library from setting K.

Table 3: Sum up of all passage classification tests. The Library and Test Data columns give the sensor
settings from which data is collected, see Table 1. The rightmost column gives the average share of
correct classifications.

Library Test Data No. of Vehicles Correct
A B, C, D 7 81%
K I, J 7 91%
A, K B, C, F, G, I, J 12 81%
I, J, K A, B, C, F 2 99%

Table 4: Confusion matrix for classification at setting I and J. True class on the rows, estimated on the
columns. The vehicle class library is from setting K.

HW2 HT2 HW3 HT4 HT1 HT9 HT6
HW2 24 2
HT2 19 1 1 1
HW3 26
HT4 3 15
HT1 1 17
HT9 2 3 17
HT6 18

5.0 Conclusions

A sensor network with microphone and geophone arrays has been deployed in an attempt to track passing
vehicles. A lightweight distributed-type linear Kalman tracking filter fused bearings from 10 nodes placed
besides a 500 m long dirt road in the back country. Both the microphone and geophone arrays contributed to
the track estimate, although 2 geophone arrays apparently were subjected to ground conditions that rendered
the bearing estimates more or less useless. The estimated tracks showed an, in our opinion, acceptable
resemblance with reality. 10 nodes/500 m road in rough terrain appears to be an appropriate node density for
this task.

We have also studied realistic audio recordings for model classification of passing military vehicles. It
has been investigated how well this task can be accomplished using normalized spectral features of the
audio recordings together with support vector classifiers. By using both temporal and spatial decision fusion
(VIP voting), the over-all success rate in general exceeds 80% among 12 vehicle models. It appears that
classification in the summer time is easier (90% successful classification among 7 vehicle models).
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